Spirit American Society of Civil Engineers Concrete Canoe

Brent Allman Ariel Suarez Hannah Williams Shuo Zhang

NORTHERN ARIZONA **UNIVERSITY**

Project Description

• Construct a thin shelled, lightweight concrete canoe that complies with the 2014 ASCE Pacific Southwest Regional Conference and ASCE National Rules and Regulations

Project Management

Hannah Williams

Project Manager, Reinforcement Lead

Brent Allman *Concrete Lead*

Ariel Suarez Structural Analyst I

Shuo Zhang
Structural Analyst II

Project Management

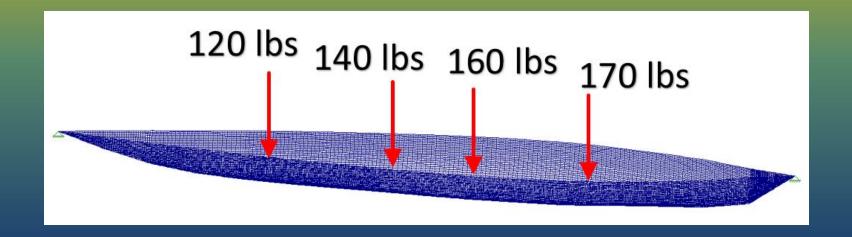
Thomas
Nelson
Technical Advisor
Project Engineer
Hubbard and Merrel

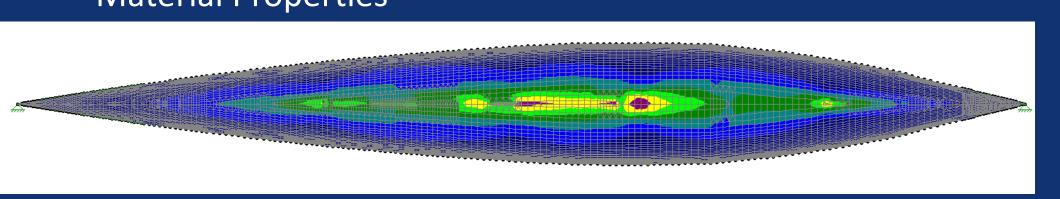
Mark Lamer
Client
PE, MEng., Instructor
NAU

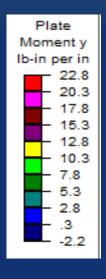
Project Management

- Mentorship Program
 - Technical knowledge
 - Skills
 - Creative problem-solving
 - 4 Principles
 - Engineering design
 - Communication
 - Teamwork
 - Professionalism

www.nau.edu/cefns

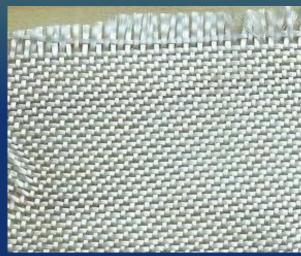

Background Information


- Baseline: Night Fury
 - Structural Analysis
 - Concrete MixDesign
 - Construction

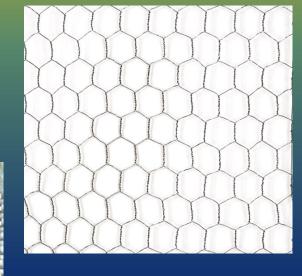


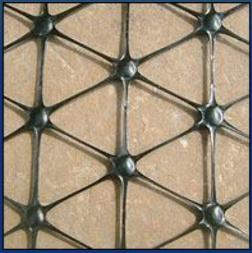
RISA 3D Model

- Freeboard
 - 4 Person: 3.2 in
 - 2 Male: 5.2 in
 - 2 Female: 5.7 in
- RISA 3D
 - Hydrostatic Forces
 - Material Properties



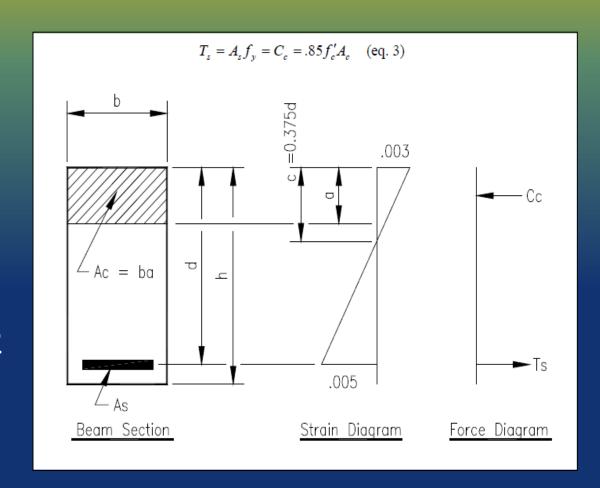
Reinforcement


White/Green Stucco Fiberglass Mesh


HexForce Fiberglass
Mesh

Chicken Wire

Geogrid



Reinforcement

Criteria	Weight Factor	White/Green Stucco Fiberglass Mesh	HexForce Fiberglass Mesh	Chicken Wire	Geogrid
Flexibility, Workability, Molding w/ Shape of Canoe	0.30	0.60	0.90	0.30	0.00
Weight	0.10	0.30	0.30	0.30	0.30
POA	0.15	0.45	0.45	0.45	0.45
Bonding with Concrete	0.45	0.90	0.00	0.90	0.00
TOTAL	1.00	2.25	1.65	1.95	0.75

Reinforcement Analysis

- Assumed Modulus of Elasticity,
 E = 2400 ksi
- Tensile stress per strand = 6.19 ksi
- Hooke's Law, $\sigma = \varepsilon E$
- Resultant strain per strand= 0.0026 in/in
- M_{capacity} = 14 lb-in/in > M_{trans.demand} = 10.2 lb-in/in

Concrete Mix Design

Spirit Mix	Reason for Use	
Lime Type S	-Shrinkage reduction -Improve workability	
Portland Cement	-Key cementitious material	
Poraver .5mm-1mm	-Light weight aggregate to reduce weight of canoe -Sustainability (recycled glass)	
Mortar Sand	-Aggregate (structural filler) -Increase strength	
Fibermesh ® 150	-Control cracking -Aid in tensile strength	

Concrete Mix Design Testing

	Last Year	This Year
Shrinkage (in.)	0.20	0.01
Strength (psi)	1,570	4,536
Slump (in.)	9.1	1.0

Shrinkage Ring Method

Compression Test Machine

Slump Test

Northern Arizona University

Construction

Female Mold

Cross Section
Overall thickness = 0.5 in

Pin Method

Casting Bulkheads
Dry unit weight, 98.1 pcf >
Unit weight of water, 62.4 pcf

Our pride and joy,

Impacts

Economical

Building canoe every year

Environmental

Waste material

Educational
Real-world application

Cost and Hours Summary

Personnel Hours						
Title	Quantity	Unit	Unit Cost	Total Price		
Project Manager	255	hours	\$80/hr.	\$20,400.00		
Structural Analyst I	240	hours	\$70/hr.	\$16,800.00		
Structural Analyst II	220.5	hours	\$65.5/hr.	\$14,442.75		
Concrete Designer/Lab Technician	212	hours	\$50/hr.	\$10,600.00		
Total Cost for Hours				\$49,242.75		

Testing	\$10,000.00
Analysis	\$2,500.00

Assumed Design Cost

\$ 61,743

Conference

Spirit

Special Thanks

Thomas Nelson

Dr. Robin Tuchscherer

Mark Lamer

Dr. Bridget Bero

Ramon Aguilar

Cynthia Alvarez

Jeremy DeGeyter

NAU ASCE Student Chapter

CEFNS

NORTHERN
ARIZONA
UNIVERSITY

References

- Slide 2 Pictures: Pic #1 www.pswc2014.weebly.com
 - Pic #2 Taken by PSWC 2013 Participant
- Slide 3 Pictures: Pic #1 PSWC 2014 Attendee
- Slide 4 Pictures: Pic #1 Provided by Thomas Nelson
 Pic #2 Provided by Mark Lamer
- Slide 5 Pictures: Pic #1 Taken by Hannah Williams
 - Pic #2 Taken by PSWC 2013 Participant
- Pic #3 Taken by Hannah Williams
- Slide 6 Picture: PSWC 2013 Attendee
- Slide 7 Pictures: All pics Taken from RISA 3D Analysis
- Slide 8 Pictures: Pic #1 Taken by Hannah Williams
 - Pic #2 www.ebay.com
 - Pic #3 www.critter-cages.com
- Pic #4 www.farmforestry.co.uk
- Slide 9 Picture: http://engineersoutlook.files.wordpress.com/2013/05/balance-design-stress-strain-diagram.png
- Slide 10 Pictures: Pic #1 Provided by Thomas Nelson
 - Pic #2 Provided by Mark Lamer

- Slide 12 Pictures: Pic #1 Taken by Gerardo Gonzalez
 - Pic #2 Taken by Ariel Suarez
 - Pic #3 Taken by Shuo Zhang
- Slide 13 Pictures: Pic #1 Provided Team Night Fury
 - Pic #2 Taken by Hannah Williams
 - Pic #3 Taken by Hannah Williams
 - Pic #4 Taken by Hannah Williams
- Slide 14 Pictures: Pic #1 Taken by Shuo Zhang
 - Pic #2 Taken by Shuo Zhang
- Slide 15 Pictures: Pic #1 www.nau.edu
 - Pic #2 www.deviantart.com
- Slide 17 Pictures: All pics Taken by PSWC 2014 NAU Participants
- Slides 1 & 19 Pictures: www.nau.edu

Brent

- All logos provided by respective companies
- Northern Arizona University Concrete Canoe Team (2013). "Night Fury." NCCC Design Paper, Northern Arizona University, Flagstaff, AZ.

Spirit

American Society of Civil Engineers Concrete Canoe

NORTHERN ARIZONA UNIVERSITY